Digression: TOFTs in 2+1d (MTCs)
A TOFT can be understood as a finite
collection of anyons
particles with fractional
statistics
Define A := { set of all Anyons}
with the following additional data:
• Fusion: A commutative, associative
product x: A × A → A given by
a × b =
$$\sum_{c \in A} N_{ab}^{c} c$$

where $N_{ab}^{c} e \mathbb{Z}_{\geq 0}$ are so-called
"fusion coefficients". Denote the
trivial anyon by 1.
=
 $a \times b = \sum_{c \in A} N_{ab}^{c} c$

• Topological spin:
A map
$$\Theta: \mathcal{A} \longrightarrow \mathcal{U}(I)$$
 determining
the anyonic character of an anyon.
Write $\Theta(a) := \exp(2\pi i h a)$,
where $h_a: \mathcal{A} \longrightarrow \mathbb{Q}/\mathbb{Z}$
is spin of a

$$= O(\alpha)$$

• S- and T-matrices:
A representation of the modur group
S-matrix determines the braiding
phase
$$B: A \times A \rightarrow U(I)$$
 between anyons
 $B(a,b) = \frac{Sab}{S_{10}}$

while
$$T_{ab} = \theta_a e^{-2\pi i c/24} g_{ab}$$
 where
c is the "chiral central charge"
of the TQFT
 $= B(a, b)$
 $a - b$
 $= (F^{abcd})e_{f}$
 $a - b$
 $= R_e^{ab}$
with "Pentagon" and "He xagon rels."

Abelian Anyons:
An anyon a is said to be "abelian"
if the fusion of a with an arbitrary
anyon b contains a single anyon
$$c=c(a,b)$$

 $a \times b = c$ \forall $b \in A$
 $\Rightarrow \sum_{c \in A} N_{ab}^{c} = 1 \forall b \in A$
 $\Rightarrow abelian a has unique inverse$
 $a \times \overline{a} = 1$
 \Rightarrow form finite abelian group
Abelian T&FTs:
An abelian T&FT is a T&FT in
which all enyons in A are abelian
 \Rightarrow completely determined by the
group A and the topological
 $\Rightarrow pin \Theta: A \rightarrow U(i)$ (quadratic form)
 $m A$

Then

$$B(a,b) = \frac{B(a,b)}{B(a)B(b)} a, b \in \mathcal{A}$$

$$S(a,b) = \frac{B(a,b)}{\sqrt{141}}, T(a,b) = e^{\frac{2\pi i \pi}{24}} G(a)bb$$
Any Abelian TQFT admits a rep.
as an Abelian Chern-Simons theory

$$\rightarrow \chi = \frac{1}{4\pi} a^{t} K a$$
for a U(1)ⁿ gauge field $a^{t} = (a_{i}, a_{j}, ..., a_{n})$

$$- gauge invariant provided
K \in \mathbb{Z}^{n \times n} is symmetric
and integral valued
The theory has central charge
$$C = Signature(K)$$
Observables:

$$W_{\overline{a}}(\gamma) = exp\left[i\overline{a}t\int_{\gamma}a\right] Wilson line$$$$

where
$$\vec{x} \in \mathbb{Z}^n$$
 is the representation
 $U(1)^n \ni 0 \mapsto e_1^{i\vec{x} \cdot \theta}$
 $charge of W_{\vec{x}}$
 \rightarrow the $W_{\vec{x}}(\vec{y})$ are world-lines
of Anyons with braiding
 $B(\vec{x}, 7\vec{s}) := \exp[2\pi i \vec{x}^{\dagger} K^{-1} \vec{s}]$
and top. spin
 $\theta(\vec{x}) := \exp[2\pi i h_{\vec{x}}], \quad h_{\vec{x}} := \frac{1}{2}\vec{x}^{\dagger} K^{-1} \vec{x}$
 θ is a "quadratic refinement"
of the bilinear form B :
 $B(\vec{x}, 7\vec{s}) = \frac{\theta(\vec{x} + 7\vec{s})}{\theta(\vec{x})\theta(\vec{x})}$
Bosonic and fermionic theories:
 $if all diagonal components of K$
are even
 \rightarrow all local operators
 $are bosonic$

→ Anyons are labelled by
lattice points
$$Z''/KZ''$$

→ Idet K | independent anyon
• if at least one of the diagonal
components of K is odd
→ theory contains local fermions
→ lines live in the lattice
 $(Z''/KZ'') \times Z_2$
→ there are 21det K | indep.
lines
Fusion rules: $\vec{x} \times \vec{S} := (\vec{x} + \vec{S} \mod K)$
The Abelian group A is given by
 $\stackrel{\frown}{\longrightarrow} Z_{K_i}$
where K are obtained by bringing
K into Smith normal form:
 $K \rightarrow diag(k_1, k_2, ..., k_n)$

Back to T[M3; UCI)] : In last lecture we argued that T[M3; U(1)] has a Lagrangian description given by: $\chi = \frac{1}{4\pi} \int d^3 x \quad \kappa^{ij} A_{ij} \wedge dA_{j}$ for M3 given by surgery along link L C S3 whose components Li (with tubular neighborhood S'x D²) have linking matrix Kid \rightarrow $|H_1(M_3; \mathbb{Z})| = |def K|$ # { vacua of T[M; U(1)] } To see this, note that we must have $\# \{ vacua of T[M_{3}; u(i)] \}$ 3d-3d correspondence = # {vacua of U(1) c CS-th on M3}